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The convexity of the free energy is studied for several lattice models in situations 
in which a parameter which is normally a positive integer takes on noninteger 
real values. Examples include the number  n of components  in the n-vector 
model, the number  of states in the Potts model, and the dimensionality of the 
lattice. In a typical case there is a critical value of the parameter such that 
convexity is preserved when the parameter exceeds the critical value, but  can be 
violated for appropriate Hamiltonians whenever the parameter is less than the 
critical value, but  not a positive integer. In several cases the critical value of the 
parameter  increases with the size of the system, thus raising questions about  the 
significance of a continuous variation of the parameter in the thermodynamic 
limit. 

KEY WORDS: Convexity; noninteger; analytic continuation; n vector; 
Potts. 

1, INTRODUCTION 

In statistical mechanics there are a number  of cases in which a lattice 
model is well defined when a certain parameter  is a positive integer, but it is 
also convenient to consider, at least in a formal sense, what happens when 
this parameter  is a real number  not limited to positive integers. Examples of 
such parameters are: the space dimensionality d of a lattice, the number  of 
components n in the n-vector model, 3 the number  q of states in the Potts 
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2 Present address: James Franck Institute, University of Chicago, 5640 Ellis Ave., Chicago, 

Illinois 60637. 
3 It is s tandard practice in renormalization group studies to treat d and  n as continuous 

variables. See, for example, Refs. 1-4. Specific reference to cases in which n is not  a positive 
integer will be found in Refs. 5 -7  (and in numerous  other papers). 
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model, 4 and the number  n of replicas in the replica approach  to r andom 
magnets.(11) 

Even a casual inspection of the relevant literature will show that 
theoretical physicists tend to ascribe a certain "mathemat ica l  reality" to 
properties of such models when these parameters  are not integers. Thus, for 
example, we are told that the crossover or critical dimensionality for a 
fourth-order multicritical point  (la~ is d = 8 / 3 ;  that the critical value of n (in 
the n-vector model) for stability of the cubic fixed point  for d - - 3  is 
approximately (13~ n = 3.128; and that for d = 3 and q greater than 2.6 _+ 
0.1, the Potts model  has a first-order transition. (10) 

Such examples (and many  others could be given) raise an impor tant  
issue: is it really possible to say unambiguously  what  one means when 
talking about  the dependence of various "physical"  quantities on nonin- 
teger values of these parameters? Are there specific mathematical  models 
associated with these noninteger values? A n d  if so, do they possess a 
thermodynamic  limit and a convex free energy (17'~8~ (and possibly other 
properties), as do models with integer parameters? These are interesting and  
important  questions wh ich - - so  far as we k n o w - - h a v e  received little atten- 
tion in the literature, s 

One very plausible suggestion is that  one should use an analytic 
cont inuat ion of the partit ion function, correlation functions, etc. to extend 
results which can be calculated for positive integers to other real values of a 
parameter.  6 In  this paper  we adopt  this approach,  using a particular 
condit ion (Section 2.2) which ensures that the analytic cont inuat ion is 
unique, and then discuss the convexity of the resulting free energy. 

Our  interest was aroused by some controversies arising f rom the 
application of this procedure to the n-vector model.  The case n = 0 is of 
interest because it provides a model  of self-avoiding walks or "polymers"  
on a lattice. (5'14~ In  the e = 4 -  d expansion (1'3'4) (which, incidentally, 
ascribes a certain reality to noninteger dimensions between 3 and 4), it is 
possible under  some circumstances to obtain negative susceptibilities (~5) for 
n < 1. Also, negative specific heats have been found in a one-dimensional  
model  for n < 1. (16) Such violations of convexity are surely not  possible 
when n is a positive integert 

We shall, in fact, show that whenever  n is not a posi t ive integer it is 
possible to construct  a Hamil tonian using dot  products  of pairs of n vectors 
at different sites for which there are violations of convexity. The interac- 

4 References 8-10 are a small selection of the many papers in which q (also denoted by r and 
Q) is treated as a continuous variable. 
The discussion of the replica method in Ref. I l is a noteworthy exception. 

6 Such extensions have often been tacitly employed in the literature. Explicit references to 
analytic continuation will be found in Refs. 7, 19, and 20. A particularly careful discussion 
(for the case of replicas) will be found in Ref. 11. 
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tions required are (in most cases) not of the simple, standard "ferro- 
magnetic" type, which is the reason that these violations have not been 
noted previously. Very similar convexity violations occur in the q-state 
Potts model, and in another model which we call the "axis model" (Section 
3). 

Convexity violations can also occur when n or q is a positive integer 
but the interactions involve (in a formal sense) more than n components. 
(Examples will be found in Sections 3 and 4.) In addition, violations of 
convexity can arise in lattice models of dimensionality d when d is not an 
integer. 

There is a close connection between such convexity violations and the 
existence of negative "probabilities" for certain events whose probabilities 
are well defined (and, of course, nonnegative) on the positive integers, when 
these probabilities are analytically continued to noninteger n (or q or d, as 
the case may be). Such unphysical probabilities can arise even when there 
is nothing peculiar about the interaction Hamiltonian. 

The contents of this paper are as follows. In Section 2.1 we discuss the 
problem of nonconvexity in general terms and indicate its connection with 
negative "probabilities." Section 2.2 states our scheme for analytic continu- 
ation. While it is certainly not the only possible scheme, it does seem to 
coincide with what is done in practice in many cases] In Section 3 we 
consider two models in which the "spin" variables take on a finite number 
of values: the Potts model and the axis model. (2j) These discrete models are 
technically simpler than the n-vector model, which is considered in Section 
4 for spins of fixed length and in Section 5 for spins of variable length. 
Noninteger dimensionality d is considered briefly in Section 6. In this paper 
we do not discuss the issues associated with noninteger n in the replica 
method, as these involve some technical complications. 

We wish to emphasize that this paper is not to be considered as an 
attack on the use of noninteger values of parameters, a usage which seems 
(to us) to be justified, at the very least as a heuristic procedure, in terms of 
the numerous insights which it has provided. More detailed comments will 
be found in the conclusion, Section 7. 

2. GENERAL FORMALISM 

2.1. Convexity and Positive Probabilities 

The usual convexity or stability condition for a classical (nonquantum) 
system in statistical mechanics arise in the following way. (17'18) Let ~ ) 

7 AS, for example, Refs. 2, 7, 16, and 19. 
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denote the average with respect to some probability measure, and let g and 
h be real-valued functions on the sample space of interest to us. If X is a 
real parameter, the convexity of 

f(X) = ln@ g+aa) (2.1) 

can be established by looking at its second derivative: 

f"(X)=d2f/d;k2= E(h2)-[E(h)l 2= E([h- E(h)]  2) (2.2) 

Here E is an average defined by 

E(k) = (keg+Xh)/(eg+Xh) (2.3) 

Now we know that if k is nonnegative function, ( k )  will be nonnegative, 
and hence E(k) will also be nonnegative. Consequently the right side of 
(2.2), which is the average of the square of a real-valued function, cannot 
be negative, and thus f is a convex function of X. (Naturally we must 
assume that certain technical restrictions, such as the integrability of the 
appropriate functions, are satisfied. We believe that these give no difficul- 
ties in the examples considered later in this paper.) 

In the cases of interest to us, the sample space will consist of configura- 
tions of a finite number of "spins" on a lattice, ( ) will be an average with 
respect.to an appropriate measure in the absence of interactions, g + Xh 
will be a dimensionless Hamiltonian (i.e., the Hamiltonian divided by 
-kT) containing a real parameter X, and f will be a corresponding 
dimensionless free energy. The convexity of f for integer values of n, where 
n stands for whichever of the parameters of Section 1 is under investigation, 
is then an immediate consequence of the fact that ( ) is associated with a 
probability measure in the standard way. 

To define ( ) when n is not a positive integer, we proceed as follows. 
We consider a class ~ of real-valued functions such that each k in 3U is 
defined on the sample space when n is any positive integer (i.e., k is defined 
on the union of the sample spaces for n = 1 , 2 , . . .  ), and we let (k)n be the 
average of k restricted to the sample space specified by n. If 5U has been 
appropriately chosen, there will be a "natural" extension of (k)n to all real 
values of n, or perhaps real values of n greater than some constant, or real 
values of n with the exclusion of some singular values. For the cases we 
shall consider there is a sense in which this extension is unique (see Section 
2.2). 

The extended definition of ( )n can be used to define a free energy f 
by means of (2.1) when n is not a positive integer provided ; U  contains 
exp(g + Xh), and f o r f  to be convex it is sufficient that ( k ) ,  be nonnegative 
whenever k is nonnegative. Actually, convexity follows from a somewhat 
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weaker condition, namely, that for every k ~ ~ r ,  

(k2) ,  > 0 (2.4) 

since, see (2.3), 

En(k2) = ([ ke(l/2)(g+xh)]i)n / ([e(t/2)(g+Xh)]2)n (2.5) 

We are here assuming that exp[(1/2)(g + 2th)], and this function multiplied 
by k, are elements of 54 "~. 

We shall always assume that the class ~ contains the identity 
function and is closed under the addition or product of two members, and 
under multiplication by real constants, so that it forms an algebra. In some 
cases in which the sample spaces are discrete, a convenient ~ is generated 
by characteristic or indicator functions for certain events, functions taking 
the value + 1 or 0 depending on whether the event does or does not occur. 
In this case one can speak of extending probability distributions to nonin- 
teger n, and convexity will be preserved provided the extended probabilities 
are nonnegative. When the sample space is not discrete it is often conve- 
nient to look at the extended probability distribution density. Provided the 
latter is positive and provided (k)n can be evaluated by integration, 
convexity will, of course, be preserved. However, it may turn out that (2.4) 
is valid for a particular algebra ~ "  even when the extended probability 
distribution density is not always positive. 

In any case, as will be clear from the examples in the remainder of this 
paper, violations of (2.4) when n is not a positive integer do depend on the 
choice of the algebra J S .  Usually there is a "natural" choice for ;g/-, 
depending on the type of Hamiltonian under consideration. Even if viola- 
tions of (2.4) occur for k in this ~ it does not, of course, mean that for the 
actual Hamiltonians of interest f will fail to be convex. It does mean that if 
one sets g = 0 and h = k in (2.1), then f"(0)  < 0. 

2.2. Extension off the Integers 

Obviously there is no unique way of taking a function g(n) defined 
when n is a positive integer and extending it to a function defined on all, or 
a large part, of the real n axis, unless one places very strong restrictions on 
the extended function. In this paper we shall require that the extension 
satisfy the conditions given in the next paragraph. We have no fundamen- 
tal justification for these conditions, but they have the advantage that if 
there is an extension which satisfies them, it will be unique. In addition, the 
extensions which are adopted in the relevant literature appear to satisfy this 
condition. Thus, for example, the theoretical physicist who has employed 
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some procedure to obtain a function (n + 2) / (n  + 8) when n is a positive 
integer will not usually add to it a piece proportional to sin(~m) when he is 
considering noninteger n. 

The conditions are as follows. Let there be finite real numbers no, o~, C, 
and 7, with 

2/< ~r (2.6) 

such that g(n) is an analytic function of the complex variable n in the 
half-plane, 

Re(n) >/ n o (2.7) 

and such that on this domain 

[e-'~"g(n)l < Cexp(vln[) (2.8) 

One can use Carlson's theorem (22) to show that if there are two 
functions g(n) and h(n) satisfying these conditions with (possibly) different 
choices of the constants--with of course (2.6) satisfied in both cases--and 
if g and h agree for all integer values of n greater than some finite N, then 
they are identical on the intersection of the two half-planes (2.7). Analytic 
continuation may then be used to extend the domain in the vicinity of the 
real axis toward smaller (more negative) values of n. If this extension is 
possible, then of course the extended functions g and h coincide on the 
enlarged domain. 

In what follows we shall not bother to draw explicit attention to these 
conditions except in special cases, but they are always what we have in 
mind when speaking of an extension of a function off the positive integers. 

3. DISCRETE MODELS 

3.1. The q-State Potts Model 

For i =  1 , 2 , . . .  N let S i be a variable which takes on the values 
1,2, 3 , . . .  q. In typical applications, i labels the sites of some finite part of 
a regular lattice. A typical dimensionless Hamiltonian is of the form 

H = 2 g~j~(Si ,S j )  .-I- 2 h i ~ ( S i ,  l) (3.1) 
i <j j 

where 6(a, b), the Kronecker delta, is 1 when a = b and 0 otherwise. The 
Potts model, strictly speaking, corresponds to the case where all the h i 
vanish, but it is often convenient to consider the effect of these single-site 
terms. The average ( ) will be associated with a probability distribution in 
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which the S i for different i are statistically independent, and for each i, Si 
Uikes each possible value with probability 1/q. 

Let us first consider the situation in which there is only a single site, 
N = 1. For q/> 1 an integer, one finds that 

f (h )  = ln(e  hS~s''l)) -- ln[(e  h + q - 1 ) /q ]  (3.2) 

has a second derivative: 

f ' ( h )  = (q - 1)eh/(e  h + q - 1)2 (3.3) 

The right side of this equation is analytic in q for a fixed h, except for the 
pole at 1 - e h, and is nonnegative for real q/> 1. However, for real q < 1 it 
is negative, indicating a violation of convexity in this region. 

To see that everything will be well behaved for q/> 1, we compute the 
probabilities Po and P1 that 6(S 1, 1) takes the values 0 and 1, respectively, 
when q is a positive integer: 

Po = (q - 1)/q, P, = 1/q  (3.4) 

Note that P0 and PI are positive and sum to 1 for all real q > 1. 
Consequently (2.4) will be satisfied for q f> 1 whenever k is a real-valued 
function of 3(S 1 , 1), and no violations of convexity are to be expected when 

(Section 2.1) is the algebra generated by 3($1,1). 
Since the joint probability distribution (corresponding to ( ~ )  for the 

6(S~, 1), i = 1,2 . . . .  N is the product of the individual distributions, the 
same conclusions hold when ~ is the algebra generated by these quanti- 
ties. That is, there can be no violations of convexity for any Hamiltonian in 
5U as long as q ~> 1. In particular, H may involve interactions of the form 
3(S i, 1)3(Sj, 1) for i r  as well as the single-site terms in (3.1). However, 
for any q < 1 it is clear that violations of convexity are possible. For 
example, with all the Kij and all the h i except h 1 set equal to zero in (3.1), 
we return to the example already considered in (3.3). 

A generalization of ~ is the algebra J{-~ generated by 3(Si,c 0 for 
ct = 1 , 2 , . . .  v and i = 1,2 . . . .  N. The argument given above in the case 
~, = 1 can be easily extended to show that (2.4) will be satisfied for 
noninteger q provided q >/ v. However, violations arise as soon as q is less 
than v, as is easily shown by means of examples involving a single site, e.g., 

(E !) 1 - 8 ( s ,  - -  (3.5) 

( ~ ) v ( q - v ) e  h 
d2 exph 2 3 ( S , , a )  . . . . . . . .  (3.6) 
dh 2 \ ~=1 ( q -  u + ueh) 2 
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When the h~ in (3.1) are all zero, it is natural to focus attention on the 
algebra 5f'-' generated by the N ( N  - 1)/2 quantities 

0y = 8(S i ,S j )  (3.7) 

The probability P~ that a / / o f  the 0~j are zero is easily calculated: 

i<j 

Obviously P,~/> 0 for all real q/> N - 1, but it is negative for 

N -  2 < q < N - 1  (3.9) 

That this constitutes a violation of (2.4) follows from (3.8) upon noting that 

(1 - 0y)  = I I  (1 - 0y)  (3 .10)  
i<j 

is an element of ~ ' .  
Of course one can calculate the analog of (3.8) for any subset of the N 

sites. If this subset contains N '  sites, (3.8) holds with N replaced by N' .  
This shows that negative "probabilities" and violations of (2.4) are also 
possible for q between N '  - 2 and N '  - 1. Since N '  can be as small as 2 
this means that such violations are possible for any real, positive q less than 
N - 1, with the exception of integer values. Furthermore, a direct calcula- 
tion shows that 

(d2 /dKZ) ln ( expKOla )  = ( q -  1)e/(/(eK + q -  1) 2 (3.11) 

and hence violations of convexity can occur for any real q < 1. 
It is not difficult to show that the probability that a specific subset of 

the 0y are equal to 1 and the rest are equal to zero is either zero or given by 
the right side of (3.8) with N replaced by a smaller positive integer. Since 
such quantities are nonnegative for q > N -  1, we conclude that no viola- 
tions of convexity will occur vdaen q is an arbitrary real number not less 
than N - 1. 

We conclude that for the algebra ;Yg~' generated by the 0~j there is a 
critical value 

qc = U -  1 (3.12) 

for q such that violations of (2.4) cannot occur for q >1 qc, but can occur for 
any q < qc unless this q is a positive integer. The fact that violations of 
convexity can occur does not mean they actually will occur for a specific 
Hamiltonian and a particular linear parameter. But even in those cases in 
which no "observable" violations of convexity occur, one can still expect 
that for q less than q~ and not a positive integer there will be certain events 
with negative "probabilities." Also note that since q~, (3.10), increases with 
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N, in the thermodynamic limit when N goes to infinity the only "safe" 
values of q are the positive integers. 

3.2. The  Axis Mode l  

For i = 1 , 2 , . . .  N, let S i be a vector with components S~ ~, a = 1, 
2 . . . .  n, and suppose that all of these components are zero except for one, 
which takes the values + 1 or - 1 .  That is, Si is a unit vector parallel or 
antiparallel to one of the n coordinate axes (whence the name "axis 
model"). Each of these 2n possibilities is given equal weight and the Si are 
independent in the probability distribution which determines ( ) .  

The analog of (3.1) is 

H =  E gijsi" sj  + E h i S i  1 (3.13) 
i<j 

where S i �9 Sj is the usual dot product, ~] ~ Si'~Sf. This suggests a study of the 
algebras ;7U, generated by the S~ 1 for i = 1, 2 , . . .  N, and ;YU' generated by 
the N ( N  - l ) / 2  quantities 

0~ = S~-Sj (3.14) 

The results obtained are similar to those for the Potts model in Section 
3.1. In particular, we have 

d 2 ln(exphSll ) = 1 + (n - 1)coshh (3.15) 
dh 2 (n - 1 + coshh) 2 

Thus for any n < 1 it is possible to produce violations of convexity by 
making h sufficiently large. On the other hand, the probabilities Po, P+,  
and P that S~ takes the values 0, + 1, and - 1, respectively, are 

Po = (n - 1)/n, P+ = P = 1/2n. (3.16) 

Since these are nonnegative for all real n/> 1, we conclude that violations 
of convexity are 0nly possible for n < 1 in the case of the algebra 5U. 

As in the case of the Potts model, we can extend ~/- to the algebra ;TU, 
generated by the S7 for 1 < a < v and 1 < i ~< N. (This is of some interest 
in view of the fact that the n--> 0 limit of a partition function using 

H =  ~ KijSi. S j + ~ h  i ~ Si '~ (3.17) 
i<j i a= 1 

with ]S~[ equal to ~fn rather than 1, describes an assembly of 1, different 
kinds of self-avoiding walks. 8 In the following equations we will, however, 

8 The method of Hilhorst (21) can be extended to p > 1 using the methods proposed in Ref. 25. 
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assume that  [S~I = 1, not  n.) Violations of convexity arise as soon as n is less 
than v, as is evident f rom examples  involving one site: 

d 2 1 n ( e x p h ~ , S ~ )  = ~ + (n - p)coshh 

Once again, it is not  difficult to show that  (2.4) will be satisfied for all 
n/> p. Thus the results are quite analogous to those for the Potts model.  

In  the case of ~ '  we note that  the probabi l i ty  P ,  that  all the 0~ are 
zero is given by 

P ,  = n(n  - 1)(n - 2 ) .  �9 �9 ( n -  N + 1 ) / n  u (3.20) 

which is the same as (3.8) if q is changed to n. Thus  the same a rgument  as 
in Section 3.1 shows that  violations of convexity are possible for any real, 
noninteger  n between 0 and  N -  1. In  addition, direct calculat ion shows 
that  

d 2 l n ( expK0 ,2 )  = 1 + (n - 1 )coshK (3.21) 
dK 2 (n - 1 + c o s h K )  2 

and hence violations of convexity can occur  for any  n < 1. On the other 
hand,  by an a rgument  similar to that  in Section 3.1, one can show that  the 
probabi l i ty  of any event  in which all the 09 have  specified values must  be 
nonnegative,  and  hence violations of convexity are impossible,  for real 
n > ~ N - 1 .  

4. THE n-VECTOR MODEL: SPINS OF FIXED LENGTH 

4.1. Introduction 

F o r j  = 1,2 . . . .  N, let Sj be  a ("spin")  vector  whose n componen t s  S~, 
a = 1,2 . . . .  n, are real and satisfy 

(S? )2= a (4.1) 
a = l  

Throughou t  this par t  of the paper  we shall assume that  a = 1, so the Sj are 
of unit  length. It  is nonetheless convenient  to leave a in various formulas  as 
a parameter ;  in part icular,  this will facilitate the discussion in Section 5. 

A typical dimensionless Hami l ton ian  is of the fo rm 

H = • Ko.S z. Sj + 2 h,S, 1 (4.2) 
i < j  i 
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where S, .Sj  is the usual dot product, ~]~Si~ST, and h i is a (dimensionless) 
magnetic field at the ith site. 

The average ( ) corresponds to a probability distribution in which the 
S i for different i are statistically independent, and for each i a uniform 
weight is assigned to the sphere defined by (4.1). Consider a single site, say, 
i -- 1, and for convenience define 

x~ = S[ ~ (4.3) 

Then for this site the probability distribution may be thought of as arising 
from a probability density 

n 2 oo d x l  d x n 3  a 2 (4.4) P ( X l ,  X 2 . . . .  Xn) = 6 a --  . . .  --  
oo 

where 6( ) is the Dirac delta function. The moments of the distribution can 
be easily calculated in the manner shown in Appendix A. In particular, if p 
is a vector whose components, p~, are nonnegative integers, then 

( a=l f i  (Xa)P~) = alpl/2H~=l[~(n__+_~)._.._(l~__b_~[ Z ~ ) 1 " 3 " 5 " ' "  ( p j -  1)] (4.5) 

where 

IP] = ~ P~ (4.6) 

and all the p~ are even.  If one or more of the p~ is an odd integer, the left 
side of (4.5) vanishes. 

4.2. The Case of v Explicit Components 

We shall begin our study of convexity of the n-vector model by 
considering the algebra ~ (Section 2.1) generated by the first v compo- 
nents of the vectors Sj, i.e., by { S f  } with c~ = 1,2 . . . .  v. Here u will be a 
positive integer which is held fixed when n is varied. The case v = 1 arises 
in a natural way if one sets Kq = 0 in (4.2), and corresponds to the first 
situation considered in the Potts model and the axis model (Section 3). It is 
actually sufficient, as we shall see, to work out the results for a single site, 
and for this purpose we use the notation (4.3). 

As long as n t> v is an integer, the joint probability distribution density 
for x 1,x2, . . .  x~ can be obtained integrating (4.4) over x,,+ 1,x~+2 . . . .  x n. 
The result (Appendix A) is 

r ( n / 2 ) ( a  - 22) ~"-")/2-1 

p(X, ,X 2 . . . .  Xv) = qr u/2I "r[ �89 (n_V),an/;_l (4.7) ] 
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where 

y2 = k x,2 (4.8) 
a = l  

lies between 0 and a; when y2 is outside this range, t~ vanishes. (For present 
purposes, a may be replaced by 1.) 

Although (4.7) has been derived for n an integer, it is evident that 
when ~2 has a value less than a, the right-hand side of this equation defines 
a function of n which is analytic in the entire complex n plane except for 
some poles on the real axis for n < v. The function satisfies the conditions 
of Section 2.2, and in this sense is a unique extension of the probability 
density off the positive integers n > v. Furthermore, for real n > v it is a 
nonnegative probability density. 

On the other hand, the right side of (4.7) is negative in the range 

v -  2 < n < v (4.9) 

for v > 2, or 0 < n < 1 when v = 1. Thus one is not surprised to discover 
that 

a_2((a_ ~2)2 ) = ( n -  v)(n + 2 -  v) 
n(n + 2) (4.10) 

is negative in the same interval. (This formula can be obtained either from 
(4.7) or by the use of (4.5).) Furthermore, upon replacing ~2 by the sum of 
the squares of the first v' of the x , ,  with v' < v, one obtains (4.10) with v 
replaced by v'. Consequently, violations of condition (2.4) will occur for 
any n between 0 and v. They also occur for all n < 0, since, by (4.5), 

(x 2) = a/n (4.11) 

In the case v = 1 it is helpful to look at an explicit example, that of a 
spin at one site in a magnetic field. One can show that 

Z = (e hx~) = F(n/2)(h/2) l- n/2In/2_ l(h) (4.12) 

where I, is a modified Bessel function, and thus (see Appendix B): 

re(h) = dlnZ/dh = In/2(h)/In/2_ t(h) (4.13) 

For convexity to be satisfied, m(h) must be monotone increasing in h. 
However, for any n < 1 (see Appendix B), dm/dh is negative when h is 
sufficiently large. When n = 0, dm/dh decreases as - 2 / h  2 for large h. 

If one has v > 1 and considers a dimensionless Hamiltonian 

H= (hill7) k St  (4.14) 
~ = 1  
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it is easy to show by means of a rotation that the corresponding partition 
function is identical to that in (4.12). Hence for this particular example, 
unlike its analogs in the Potts and axis models [Section 3; see (3.6) and 
(3.18)] a violation of convexity sets in at n = 1 and not at n = v. 

The conclusion is that for a single site and the algebra 5U generated 
by x l , x  2 . . . .  x~, convexity is preserved for any real n >/v, but violations 
can occur for any real n < u. The results for N sites are the same as for a 
single site. Thus for n > v the joint probability distribution density asso- 
ciated with ( ) for N sites is simply a product of positive densities of the 
form (4.7). On the other hand, violations of (2.4) for n < v using functions 
which depend only on the S~ for a = 1 , 2 , . . .  v are obviously still present 
for N > 1. Note the resemblance between this result for the n-vector model 
and what we obtained for the algebra ; U  in the Potts and axis models, 
Section 3, where we only considered v = 1. 

4.3. The Algebra of Dot Products 

With the h~ = 0 in (4.2), we are naturally led to consider the algebra 
2U'  generated by the N ( N  - 1)/2 dot products 

My = S i .Sj  (4.15) 

Actually it will be convenient to regard the Mij. as elements of a real, 
symmetrical, positive semidefinite matrix M whose diagonal elements, in 
accordance with (4.15) and (4.1), are all equal to a. It can then be shown, 
Appendix A, that for n an integer greater than or equal to N, the joint 
probability distribution density for the M 0 with i < j  is given by the 
expression 

..~N(I--N)/4(N~ 1 F(n/2)  } 
p ( M ) -  aN(n_1 ~ j=l F [ � 8 9  1 (detM)(n-N-l~/2 (4.16) 

Here det M stands for the determinant of the matrix, and it is understood 
that (4.16) holds only when M is positive (semi-) definite, as otherwise 
p = 0 .  

When M is fixed and de tM is positive, the right side of (4.16) is an 
analytic function of n in the entire complex plane with the (possible) 
exception of poles on the negative real axis. Since the conditions of Section 
2.2 are satisfied, we can speak of a unique extension off the integers n >~ N. 
Furthermore the coefficient in curly brackets is positive as long as n is real 
and exceeds the critical value of 

n c = N -  t (4.17) 
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On the other hand, the right side of (4.16) is negative for n C - 1 < n < nc, 
suggesting that violations of convexity might be possible in this interval. 

A direct calculation, Appendix D, shows that 

U - I  F(n/2)F[  �89 - j )  + m] 
<(detm)m> = j=l]'I r'(n/2 + m)]-'[ l(n - j ) ]  (4.18) 

where m is real and positive, and thus in particular, 

N - 1  ( H  - -  N + k)(n - N + k + 2) 
<(det M)2> = I-[ k=l n(n + 2) (4.19) 

The right side of (4.19) is negative for n~ - 1 < n < n~, and since d e tM 
belongs to 3U' ,  this is a violation of (2.4). By restricting ourselves to the 
subalgebra obtained from dot products of some subset of the S i and 
repeating the above argument, we can produce violations of (2.4) for n 
between n C - 2  and n ~ - l ,  or n c - 3  and n ~ - 2 ,  etc. That is to say, 
violations of convexity can occur for any noninteger n in the interval 
O < n < n c .  

In addition, a direct calculation (Appendix B) shows that for a = 1, 

d ln<exp(KS 1 �9 S2)>/dK = In /z (K) / Ir  ) (4.20) 

The right side is the same as (4.13) with h replaced by K. Hence for any 
n < 1 violations of convexity will occur when K is sufficiently large. 

Thus we conclude that for the algebra ~ '  of dot products, violations 
of convexity or negative "probabilities" must be anticipated for any real n 
less than the critical value of n~ = N -  1, except when n is a positive 
integer. Just as in the cases of the Potts and axis models, one has the 
troublesome feature that n~ increases to infinity in the thermodynamic limit. 

5. THE n-VECTOR MODEL: SPINS OF VARIABLE LENGTH 

5.1. The Case of v Explicit Components 

We employ the notation of Section 4.1, but drop the requirement (4.1). 
We shall assume that at a single site the probability density is given by 
[compare with (4.4)] 

(n t 
. . .  = . w 2 2 ( 5 . 1  t w ~,  2 ~ dXl dxn xa P(X l  , x 2  , Xn) Xa �9 . 

where w(t) is a nonnegative function for t ~> 0. The density for a system of 
N spins is then a product of functions of the type (5.1). The marginal 
distribution density for the first v ~< n components is then [compare with 
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(4.7)]: 

r(n/2)f w(t + x2)t -1 dt 

Provided w(t) is suitably "well b e h a v e d ' - - i n  particular, decays sufficiently 
rapidly as t --> oo-- the right side of (5.2) is defined and positive for all real 
n > p, and for fixed 2 2 is an analytic function of n of the type disucssed in 
Section 2.2. This means that no violations of (2.4) will occur for n/> p. 

The situation for n < l, depends on w, and it is useful to consider two 
examples. For a Gaussian weight, 

w(t)  = e -& (5.3) 

one finds that 

~, (:72) = ( fl/Tr)~/Zexp( _ fl:72) (5.4) 

is independent of n. This means (2.4) will be satisfied for all n. On the other 
hand, 

w(t)  = te -~' (5.5) 

gives rise to 

~p,(:72) = ( fi/~r)P/2E1 _ , I n  + 2f l :TZ/n]exp(-  fi:72) (5.6) 

As soon as n is less than ~, the quantity in square brackets is negative when 
22 is sufficiently small. A violation of (2.4) is, therefore, possible for any 
positive n < p for the algebra LU generated by the x~ for a = 1 , 2 , . . .  ~. 
For example, one can construct a polynomial in :72 which is finite at :72 = 0 
and then drops to a very small value until :72 is much larger than 1~ft. 

In order to understand the behavior exhibited by the two previous 
examples it is helpful to write the integral Y appearing in the numerator  of 
(5.2) in the case :72 = 0 as the sum of three terms: 

2w(O)b("-~)/2 
y, = w(O) lb t ( ._ . ) /2_ ,  = (5.7) 

J0 n - - p  

r2 = fob[ w(t) - w(O) dt (5.8) 

Y3 = f b~w( t )  t ( ' -  ~)/2-, at (5.9) 

where b > 0 is some constant. We shall consider the analytic continuation 
of each of these integrals to n < v. 

As long as w(t) is well behaved, Y3 will be an entire analytic function 
of n which is positive when n is real. The analytic continuation of Yl is 
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given by the right side of (5.7); note that the pole at n = t, will be canceled 
by the corresponding pole in the denominator of (5.2). The behavior of Y2 
depends on the behavior of w near t = 0. If we assume that for 0 < t -4< b, 

I w ( t )  - w(0)l A t e  (5.10) 
for some p > 0, then (5.8) defines a function of n which is analytic as long 
a s  

Re(n) > i, - 2p (5.11) 

and hence has a unique analytic continuation to values of n somewhat less 
than u. 

For w(0) > 0, Y is dominated by Y1 near n = u, and will therefore be 
negative for n slightly less than p. As the F function in the denominator of 
(5.2) also changes sign at n = p, ~n(0) remains positive. When w(0) = 0, on 
the other hand, Y is the sum of Y: and Y3, both of which are positive for 
n > ~ - 2p. Consequently, ~n(0) will be negative for 

- 2p < n < ~ (5.12) 

or at least that portion of this interval on which n is positive. Note that 
these conclusions agree with the previous examples, and indicate an impor- 
tant difference between the cases w(0 )=  0, and w ( 0 ) >  0, a difference 
noted previously (in another connection) by Jasnow and Fisher. (2~ 

As another example, suppose that w(O) > 0, and that w(t) is increasing 
at t = 0 and has the form 

w(t) ~-- w(O) + At e (5.13) 

with A > 0 and p > 0, for small t. Then Y2, (5.8), will diverge to + oe as n 
decreases to ~ -  2p, which means that Y must be positive for n slightly 
larger than p - 2p. If, in addition, p < 1 and p >I 2p, I'[�89 - p)] will be 

negative and F(n /2)  positive for n between p - 2p and ~, so that ~,(0) will 
be negative for n in some open interval whose infinum is p -  2p. In 
particular, if both w and its first derivative are positive at t = 0, one can 
expect violations of convexity for ~/> 2 to occur for n someplace in the 
interval between v - 2 and v. 

By applying the preceding arguments to the function 

= 2 + 0 (5 .14)  

rather than w(t), one can analyze the analytic continuation of ~ , (2  2) for 
2 2 > 0. We shall omit the details and merely mention two results: 

If w(0 )=  0 and w(t) is continuous near t = 0, then for n slightly less 
than ~ there is an c, > 0 such that +,(y2) is negative for 2 2 <  e n. This 
means [see the discussion which follows (5.6)] that violations of (2.4) can be 
anticipated for suitable elements of ~ -  when n is slightly less than p. 
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If at some t o > 0, w has a positive first derivative, then--see the 
discussion following (5.13)--~n (2 2 = to) is negative for n slightly larger than 
v - 2, assuming v > 2. 

5.2. The Algebra of Dot Products 

We follow the notation of Sections 5.1 and 4.3. As shown in Appendix 
A, the joint probability distribution density for M~, i < j ,  [see (4.15)] is 

F 1 ~(M) = R(n,N,w) [I w(Mq) ( d e tM)  (n-N 1)/2 (5.15) 
j=l J 

with 

�89 
R(n,N,w) = (5.16) 

[ 9(N-1)/4f~tn/2-1w(t)dt]N 

The density t~ is zero when M is not positive definite. 
Formula (5.15) has a strong resemblance to (4.16). In particular for a 

suitably well-behaved w(t) decreasing rapidly as t ~ oc and bounded near 
t = 0, the right side of (5.15) can be extended to noninteger n, at least in the 
region Re(n) > 0, and it is positive for n > N - 1 and becomes negative for 
n between N - 2 and N - 1. Hence we can anticipate violations of convex- 
ity for the algebra ~ generated by S i �9 Sj for i ~< j .  Indeed, as shown in 
Appendix A, 

[ fgtn/2+m_,w(t) dt ]N 
((detM)m)w = [ fyt n/2-'w(t)dt ( (de tM)m) ,  (5.17) 

where ( )w refers to an average carried out using (5.15), i.e., corresponding 
to the weight w, and ( )1 is the corresponding average for spins of fixed 
length equal to 1, and is given by  (4.18). Since the quantity in square 
brackets in (5.17) is positive, we find that our conclusions of Section 4.3 
apply essentially unchanged: violations of convexity are to be expected for 
0 < n < nc, where n c = N - 1, with the exception of the integers. 

When considering spins of variable length, it is plausible to employ the 
algebra .3~ which differs from ~ '  (Section 4.3) in that it contains the 
diagonal products S i . S  j.  One can, of course, ask the question as to 
whether violations of convexity can be obtained using only elements from 
~ '  in (2.4). We have not studied this situation in detail. Preliminary results 
or simple examples with N = 2 suggest that for w(0 )>  0 an analytic 
continuation of ( ) to n less than N - 1 may be possible without violating 
convexity. However, we have not found the situation easy to analyze. 
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6. LATTICES OF NONINTEGER DIMENSION 

The case of noninteger spatial dimensionality poses more problems 
than the examples considered earlier in this paper. The free energy of such 
a system depends on the type of lattice (e.g., body centered or simple cubic) 
as well as the dimensionality. Also it is somewhat unnatural to ascribe a 
dimensionality to a finite piece of an infinite lattice. In this section we shall 
not discuss the general problem, but instead restrict ourselves to a particu- 
lar example: the Ising model (n = 1) on a d-dimensional hypercubic lattice 
Z d, with a particular type of "near-neighbor" interactions. 

The sites of the lattice are labeled by ordered d-tuples of integers, 
a = (a I . . . . .  ad). We shall say that two sites a and b are near neighbors of 
class fi provided the vector difference a - b has fi components which are 
+ 1 or - 1, and all the other components vanish. Thus neighbors of class 1 
are separated by a unit vector parallel to one of the coordinate axes, those 
of class 2 by the diagonal of a square, etc. The dimensionless Hamiltonian 
will have the form 

M /~ 
H = h E g a +  2 K~ Z SaSh (6.1) 

a f i= 1 (ab )  

where S a = _+ 1 is an Ising variable associated with the site a, ~]~ab> means 
a sum over all pairs of sites a and b belonging to class fi, with each pair 
appearing in the sum precisely once, and h and the K B are dimensionless 
single-site and pair coupling constants. The integer M may be chosen as 
large as we please. 

When d is a positive integer, the free energy f per site for the infinite 
system possesses a convergent 9 "high-temperature" expansion, ~23) 

M 

provided h and Kr are sufficiently small (the condition depends on d). Here 
�9 . -  denotes cubic and higher-order terms. Note that 2 8 times the bino- 

mial coefficient is simply the number of possible vector differences a - b 
for sites which are neighbors of class ft. 

The coefficients of the lowest-order terms in (6.2) are polynomials in d, 

and the same is true for all the higher-order terms, for reasons which can be 
inferred from a paper by Fisher and Gaunt.  (24) This means that they 

9See Ref. 17, p. 112, and Ref. 18, p. 48. 
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possess a "natural" extension to noninteger d, and this allows one to extend 
f,  at least formally, to noninteger d. However, it is not clear that the 
expansion (6.2) will continue to converge when d is not a positive integer. 
[For a given set of coefficients h, K 1, etc., one expects there will be an 
upper limit to the integer dimensionality for which the series converges, 
unless these coefficients are made to depend explicitly on the dimensional- 
ity. But even when d is less than this upper limit, it might be the case that 
(6.2) fails to converge for some or all noninteger values.] 

Leaving aside the difficulty just mentioned, we can say that if (6.2) 
does define an extension o f f  to noninteger d, this extension is obviously not 
a convex function of Kr for d between fl - 2 and/3 - 1 when the coupling 
constants are sufficiently small, since the coefficient of (K/~) 2 in (6.2) is 
negative. Consequently violations of convexity can occur whenever d is less 
than M - 1, with the exception of cases in which d is a nonnegative integer. 

This situation might seem at first sight somewhat analogous to those 
discussed earlier in this paper. However, there is an important difference: 
while we have shown that violations of convexity can occur for d < M - 1, 
we have not shown they are impossible for d > M - l, but only that they 
are absent at "high temperatures" where f is dominated by the terms shown 
explicitly in (6.2). Also note once more that our argument depends on the 
convergence of (6.2); should this fail, the absence of convexity is probably 
a minor difficulty compared to the problem of defining f for noninteger d. 

7. S U M M A R Y  A N D  C O N C L U S I O N S  

We have shown that in each of the cases we have studied--the 
n-vector model, the q-state Potts model, the axis model, and the dimension- 
ality d of the lattice--violations of convexity are possible under suitable 
circumstances when the parameter of interest (n, q, or d) is not a positive 
integer. In order to "see" such violations it is necessary to use an appropri- 
ate Hamiltonian; the fact that typical Hamiltonians are not of the appropri- 
ate sort is the reason why these problems seem to have been overlooked 
previously, except for special cases. However, even in those cases in which 
the Hamiltonian does not contain interactions which make the violations of 
convexity explicit, there are likely to be certain configurations of the system 
to which a suitable analytic continuation from the positive integers will 
assign a negative "probability." Both negative probabilities and violations 
of convexity are, of course, exceptations to the usual principles of statistical 
mechanics. 

In addition we have shown that there are other circumstances in which 
real noninteger values of these parameters are "safe" in the sense that 
probabilities (of the configurations or events of interest) are nonnegative 
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and convexity is not violated. In the examples we have considered, the safe 
values of the parameter are those in which it is larger than a certain critical 
value. However, in the case of dot products for the n-vector model, or the 
analogous products for the Potts and axis models, the critical value tends to 
infinity with the size of the system, suggesting that in the thermodynamic 
limit violations of convexity are to be anticipated whenever the parameter 
is not a positive integer. In the case of the dimensionality d, we have not 
been able to show that there is a critical value above which noninteger 
values are safe. Violations of convexity can occur in the thermodynamic 
limit whenever d is less than M -  1 and not an integer, where M is the 
uppper limit of the sum in (6.1). As the choice of M is somewhat arbitrary 
there is some justification for concluding that in the thermodynamic limit 
violations of convexity are also possible whenever d is not a positive integer 
(or zero). 

While the mathematical situation (as far as we have studied it) is clear 
and unambiguous, its implication for the numerous calculations involving 
noninteger n, q, and d which have appeared in recent years--almost all of 
them based on approximations whose validity is difficult to assess--is far 
from obvious. On the one hand, our results by themselves need not cast any 
serious doubts on the conclusions of these calculations. For example, it 
seems entirely plausible that various critical exponents, which are (pre- 
sumably) well defined in the n-vector model for d = 3 and n a positive 
integer, should depend on n in a smooth way, which allows some sort of 
analytic continuation to noninteger n,  at least near some intervals on the 
real n axis. Breakdowns of convexity may turn out to be of no significance 
for the asymptotic critical behavior for n/> 1. 

And even if breakdowns of convexity do occur in a region of interest, 
they may be perfectly consistent with some particular physical application. 
This is what seems to be the case for d = 3 and n = 0, where one of us has 
shown that a proper translation of the n-vector model at n = 0 into the 
physically interesting system of self-avoiding walks results in a convex free 
energy for the latter. (25~ Negative susceptibilities and the like, while con- 
trary to one's intuition, may merely be a necessary price to pay in order to 
gain the full benefit of certain powerful theoretical tools. 

On the other hand, our results may be pointing to some fundamental 
limitations in those theoretical procedures which treat n, etc., as continuous 
variables. Such procedures often seem to involve the implicit assumption 
that "there is nothing special about the integers." Our calculations, how- 
ever, indicate that positive integer values of these parameters a r e  special in 
at least o n e  important respect: convexity of the free energy. Could it be that 
the positive integers are unique in other respects? 
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As we indicated in the introduction, we think that their undeniable 
success in terms of physical insight, agreement with experiment, and 
resonable correspondence with other approximate and exact calculations is 
by itself a justification of methods in which n, d, etc. are treated as 
continuous parameters. Even if one eventually has to conclude--and,  in 
our opinion, the time has not yet a r r i ved - tha t  these procedures lack a firm 
mathematical foundation and are perhaps even a trifle misleading, the 
situation need be no worse than what is found in various other areas of 
statistical mechanics. For example, it is well known that there are severe 
mathematical problems associated with the proper definition of a metasta- 
ble state in equilibrium thermodynamics and statistical mechanics. (26) 
Nonetheless, the concept is extremely useful when used in its proper 
context and is not taken too seriously. Similarly, noninteger parameters of 
the sort considered here ought to be a fruitful source of insight when used 
within their proper limits, even if such limits should turn out to be narrower 
than has hitherto been supposed. 
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APPENDIX A. DERIVATION OF (4.5), (4.7), AND (5.2). 

To obtain (4.5), we use (4.4) and the following integral, in which the p~ 
are nonnegative even integers whose sum is IP[: 

f ~_~ d x  I . . . dxn 3 t -  2 lxo ( x J  ~ 
O~ o~=1 

(A.1) 
a = l  

The derivation of (A. 1) can be carried out as follows. The exponent of t on 
the right side can be obtained by a dimensional argument or by making 
the substitution x~ = y ~ -  in the integeral. To check the remaining factors, 
multiply both sides of (A.1) by e - t ,  integrate over t from 0 to oo, and use 
that fact that 

f x e-X2dx= r[ �89 + p) ]  (A.2) 

when p is an even integer. For future reference, we note that when all the p~ 
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are zero (A.1) reads 

;: oodxl . . . dx,  8 t -  (A.3) 

Equation (4.7) is a special case of (5.2) obtained by setting w(t)  equal 
to 8(1 - t) in the latter. To obtain (5.2), we begin with (5.1) and note that 

2 f ~ 1 7 6  w 2 xa dx.+idx;+2 . . .dxn 
u - o o  \ a = l  

-- Fi72~-~ 7) ]qr(n-")/2 Jo~176163 + t)t  (n- ')12-1 (A.4) 

where 

2 2 = ~ x~ 2 (A.5) 
a = l  

and we have used (A.3) to evaluate one of the integrals. The denominator 
on the right side of (5.1) is given by (A.4) in the special case in which u and 
2 2 are both zero: 

W 1 X 2 d x ,  . . .  d x .  - r(n/2) d t  (m.6) 

APPENDIX B. DERIVATION OF (4.12), (4.13), AND (4.20); re(h) FOR 
n < l  

Equation (4.12) can be obtained by expanding the exponential in a 
power series and comparing the result with the corresponding expansion for 
the modified Bessel function (27) I .(h).  The recursion relation 

d l J d h  = (u /h) I~  + I~+1 (B.1) 

allows one to write re(h) in the form (4.13). The easiest way to obtain (4.20) 
is to note that by symmetry the average over S l cannot depend on the 
direction of S 2. Thus the latter can be assumed to be of the form 
(1,0 . . . .  0), and consequently 

(expKS i �9 $2) = @xp(Kxl) ) (B.2) 

The asymptotic behavior of I . (h)  for large h > 0 is given by the 



Convexity Violations for Noninteger Parameters in Certain Lattice Models 585 

formula (27) 

e h 
Iv (h)~(2~h) l /2  I 1  - - l ( p 2 - - 1 ) h - I  "}" O ( h - 2 ) ]  ( B . 3 )  

Therefore 

m(h) = I,,/2(h)/I(n/2_,)(h)~l + I(1 - n)h-' + O(h -2) (B.4) 

decreases as h increases when h is sufficiently large, whenever n is less 
than 1. 

APPENDIX C. DERIVATION OF (4.16) AND (5.15) 

Equation (4.16) is our immediate consequence of (5.15) when one 
replaces w(t) by 6(1 - t) and integrates over the MO.. To derive (5.15), we 
note that 

Lj~k j 

where Z is a normalization constant and J~,U is defined by 

(c.1) 

Jn,N(M) = / j~k  (~(Mjk -- Sj . Sk)dSl  . . . a s  N (C.2) 

In these formulas the matrix M with components Mjk is assumed to be 
symmetrical and positive definite. The symbol dSj stands for 1-[~ dS 7 .  

Formula (C.2) can be evaluated recursively by noting that the inte- 
grand is invariant under a simultaneous rotation (real orthogonal transfor- 
mation) of all of the Sj. Consequently Jn,N is equal to 

f ~(MNN __ SN . S N ) d S N =  ~n/2(MNN )n /2 - , / r (n /2 )  ( C . 3 )  

times the integral over the remaining product of 3 functions in (C.2) with 
S u replaced by a vector (0, 0 . . . .  , (MNN)I/2), i.e., 

N - I  N - I  

.jI~ 3(MjN Sj (MNN )I/2)j<]'Ik 3(Mjk Sj Sk)dS , dSN_ I (C.4) 1 - -  n __ . . . . 

The next step is to integrate this expression over dS]' dS~ . . .  dS~v_ i. If S} 
is the vector with n - 1 components equal to the first n - 1 components of 
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Sj, the result can be written in the form 

[(MNN)I/ ]L-Nf II SZ) dSl . . .  d S ; , ,  (C.5) 
j<k 

where M' is an (N - 1) x (N - 1) matrix with components 

Mj'k= Mjk- Mj.NMkN/MNN 

Upon comparing (C.5) with (C.2) and putting all the factors together, we 
have the desired recursion relation: 

N--1 
= I ,N-I (  ) (C.6)  

Now Mj~ can be thought of as consisting of the upper left (first N - 1 
rows and columns) block of an N X N matrix obtained from M by 
subtracting the Nth row of M multiplied by MjN/MNN from the j th  row, 
f o r j  = 1,2 . . . .  N - 1. As the Nth column of this new matrix is zero except 
for the NN element equal to MNN, and as it has the same determinant as 
M, we conclude that 

det M = MNNdet M' (C.7) 

In the case N = 1 a direct calculation gives 

J,,I(M) = Trn/2(detM) n/2- l / F ( n / 2 )  (C.8) 

where, of course, de tM is just M1L. Combining (C.6), (C.7), and (C.8) then 
yields the formula 

~ N ( 2 n - - N +  0/4(det M )(n- N- 1)/2 

J n , x  ( m ) = rT n - lr,  r u j = 0 1  L �89 - j ) ]  (C.9) 

To complete the derivation of (5.15), we note that the normalization 
constant Z in (C.1) is 

J 
(C.10) 

where we have made use of (A.6), 

APPENDIX D. DERIVATION OF (4.18) AND (5.17) 

To obtain (5.17), we note that 

([MIm)w = L / Z  (D.1) 

where I M[ denotes the determinant of M, the matrix with dements M/j 
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equal to S; �9 Sj 
N 

L = f a s , . . . d S ~ t M I  m II ~(sj.  sj) (D.2) 
J = l  

in the notation of Appendix C, and Z is given by (C.10). Equation (D.2) 
may be rewritten as 

If we make tb_e substitution 

and note that 

(D.3) 

Sj = (tj)l/ZTj (D.4) 

(t~.s) IMl = lN[ [I tj 
J 

where N is the matrix with elements 

Njk = Tj. T k (D.6) 

(D.3) becomes 

L=fo ~dt' . . . d t  N IIw(ty)yt n/2+~-I dT~ . . .dTNINlm]-I6(1-Tj 'Tj )  
J 

(D.7) 
Combi.~ing (D.7) and (C.10) yields (5.17), where ( )~ refers to the case in 
which w(t) is 6(1 - t). 

To derive (4.18), we obtain a reeursion formula for 

Dn,x(m) = <{ml")~ (D.8) 
in the special case where 

w (t) = e - '  (D.9) 

and then use (5.17). When (D.9) is inserted in (D.2), the result can be 
written as 

Ln.N -= foo~176 f dS~ . . . dSN6(t-- SN . SN)[M,mexp( - ~ SjSy) (D.IO) 
j = l  ] 

where we have added subscripts to L for use in (D.13) below. The 
integrand is invariant under the simultaneous rotation of all the Sj, and it is 
convenient to consider the situation in which 

s~ = (0,0, . . .  0,~) (D.ll~) 
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Let Sj', for j = 1 , 2 , . . .  N -  1, be the (n - 1)-component vector obtained 
by discarding the nth component of Sj, and the M~ be the (n - 1) x (n - 1) 
matrix with elements S'~. S}. Its determinant ]M' I is related to that of M 
through the equation 

IMI = tIM'I (D.12) 

which can be obtained in the same manner as (C.7): fo r j  = 1, 2 . . . .  N - 1, 
subtract the Nth row of M multiplied by m j N / / t  f r o m  the j th  row. 

Consequently (D.10) may be written in the form 

Ln, N = fo~dt e-ttm f d s u 6 ( t -  SN "SN) 

l X (dS~ . . . d S ~ _ l e x  p - 2 (Sj ') 2 
"~ j = l  

• . . .  dS~v_,[M'[mexp - 2 
j = l  

= + (O.13) 

where we have used (A.3). Combining (D.13) with (C.10) for the case (D.9), 
and noting (D.8) and (D.1) yields the desired recursion formula: 

D~,u(m ) = [F(m + n/2)/F(n/2)iD~_l,N_,(m ) (D.14) 

The integral (D.2) is elementary when N = 1, and combining this with 
(D.14) yields the result 

N-I  F [m  + �89 - j ) ]  (D.15) 
D"'u(m)= j=0H F[ � 8 9  

for 

m > ( N -  n - 1)/2 (D.16) 

As a final step, (4.18) is obtained by inserting (D.9) on the right side of 
(5.17), and noting that in this case the left side is given by (D.15). 
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